Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Geophys Res Lett ; 48(8): e2021GL092395, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1298812

ABSTRACT

Intensive observations and WRF-Chem simulations are applied in this study to investigate the adverse impacts of regional transport on the PM2.5 (fine particulate matter; diameter ≤2.5 µm) changes in Shanghai during the Coronavirus Disease 2019 lockdown. As the local atmospheric oxidation capacity was observed to be generally weakened, strong regional transport carried by the frequent westerly winds is suggested to be the main driver of the unexpected pollution episodes, increasing the input of both primary and secondary aerosols. Contributing 40%-80% to the PM2.5, the transport contributed aerosols are simulated to exhibit less decreases (13.2%-21.8%) than the local particles (37.1%-64.8%) in urban Shanghai due to the lockdown, which largely results from the less decreased industrial and residential emissions in surrounding provinces. To reduce the influence of the transport, synergetic emission control, especially synergetic ammonia control, measures are proved to be effective strategies, which need to be considered in future regulations.

SELECTION OF CITATIONS
SEARCH DETAIL